Author Archives: Espen

About Espen

For details, see www.espen.com.

Brilliance squared

Stephen Fry and Steven Pinker are two of the people I admire the most, for their erudition, extreme levels and variety of learning, and willingness to discuss their ideas. Having them both on stage at the same time, one interviewing the other (on the subject of Pinker’s last book, Enlightenment Now), is almost too much, but here they are:

(I did, for some reason, receive an invitation to this event, and would have gone there despite timing and expense if at all possible, but it was oversubscribed before I could clink the link. So thank whomever for Youtube, I say. It can be used to spread enlightenment, too.)

Advertisements

Interesting interview with Rodney Brooks

sawyer_and_baxterBoingboing, which is a fantastic source of interesting stuff to do during Easter vacation, has a long and fascinating interview by Rob Reid with Rodney Brooks, AI and robotics researcher and entrepreneur extraordinaire. Among the things I learned:

  • What the Baxter robot really does well – interacting with humans and not requiring 1/10 mm precision, especially when learning
  • There are not enough workers in manufacturing (even in China), most of the ones working there spend their time waiting for some expensive capital equipment to finish
  • The automation infrastructure is really old, still using PLCs that refresh and develop really slowly
  • Robots will be important in health care – preserving people’s dignity by allowing them to drive and stay at home longer by having robots that understand force and softness and can do things such as help people out of bed.
  • He has written an excellent 2018 list of dated predictions on the evolution of robotic and AI technologies, highly readable, especially his discussions on how to predict technologies and that we tend to forget the starting points. (And I will add his blog to my Newsblur list.)
  • He certainly doesn’t think much of the trolley problem, but has a great example to understand the issue of what AI can do, based on what Isaac Newton would think if he were transported to our time and given a smartphone – he would assume that it would be able to light a candle, for instance.

Worth a listen..

Beyond Default

71gkby-vpilDavid Trafford and Peter Boggis are those kinds of under-the-radar strategy consultants that ever so discreetly (and dare I say, in their inimitable British way) travel the world, advising enormous companies most civilians have never heard of about such issues as how to organise your internal departments so that they are capable of responding to technical change. (I should know, because I worked with them, first in CSC and then in the Concours Group, between 1994 and 2009.)

Now David and Peter have begot a book, Beyond Default, that provides a perspective on strategy and organisational change less built on fashionable frameworks than on solid experience. Their focus is on how organisations fail to see changes in their environment and develop strategies – real strategies – to adapt to them. The reasons are many, but most important is the fact that organisations have developed processes and measures to do what they currently do, and the focus on those particulars does not permit stepping back and seeing the bigger picture. Instead, companies carry on towards a “default” future – and, crucially, that future may be declining. Companies need to know what they don’t know and what they do not have the capabilities to do – and to acquire those capabilities when necessary. To do that, the authors advocate experiential learning – seeing for yourself what the future looks like by seeking it out, preferably as a group of managers from the same organisation experiencing and reflecting together.

The authors have a background as IT consultants, and it shows: They very much think of organisations as designed systems, with operating practices and (ideally) articulated operating principles. While eminently logical, this way of organising is hard to do – among other things, it requires thinking about organisations as tools for a purpose, and that purpose has to be articulated in a way that gives direction to its members. Thinking about your principles can make you articulate purpose, but it is very hard not to make the whole process a bit self-referential. Perhaps the key, like for Newton’s second law of thermodynamics, is to keep adding external energy, constantly identifying and understanding ramifications of technical and other change – a process that requires energy, if nothing else.

Both authors care about language and explaining and discussing what happens in a way that can be understood by the organisations they are trying to help. This means that they primarily use examples and stories, rather than frameworks (beyond simple illustrations), to convey their points. They end each chapter with a set of questions the reader can has him- or herself about the organisations they manage – and do not, in any way, try to offer simple solutions. As such, the book works best when it talks about how to explain strategic necessities and start on a strategic journey – through collective leadership, not “great man” charisma. It works less well when trying to explain strategic analysis, perhaps because the authors have too much experience to settle on a simple, all-encompassing method.

Well worth the read, not least for the senior executive trying to understand a new world and wanting an explanation held in a language that fosters understanding rather than just excitement.

Neural networks – explained

As mentioned here a few times, I teach an executive course called Analytics for strategic management, as well as a short program (three days) called Decisions from Data: Driving an Organization on Analytics. We have just finished the first version of both of these courses, and it has been a very enjoyable experience. The students (in both courses) have been interested and keen to learn, bringing relevant and interesting problems to the table, and we have managed do what it said on the tin (I think) – make them better consumers of analytics, capable of having a conversation with the analytics team, employing the right vocabulary and being able to ask more intelligent questions.

Of course, programs of this type does not allow you do dive deep into how things work, though we have been able to demonstrate MySQL, Python and DataRobot, and also give the students an understanding of how rapidly these things are evolving. We have talked about deep learning, for instance, but not how it works.

But that is easy to fix – almost everything about machine learning is available on Youtube and in other web channels, once you are into a little bit of the language. For instance, to understand how deep learning works, you can check out a series of videos from Grant Sanderson, who produces very good educational videos on the web site 3 blue one brown.

(There are follow-up videos: Chapter 2, Chapter 3, and Chapter 3 (formal calculus appendix). This Youtube channel has a lot of other math-related videos, too, including a great explanation of how Bitcoin works, which I’ll have to get into at some points, since I keep being asked why I don’t invest in Bitcoin all the time.)

Of course, you have to be rather interested to dive into this, and it certainly is not required read for an executive who only wants to be able to talk intelligently to the analytics team. But it is important (and a bit reassuring) to note the mechanisms employed: Breaking a very complex problem up into smaller problems, breaking those up into even smaller problems. solving the small problems by programming, then stepping back up. For those of you with high school math: It really isn’t that complicated. Just complicated in layers.

And it is good to know that all this advanced AI stuff really is rather basic math. Just applied in an increasingly complex way, really fast.

Analytics projects

asm_topTogether with Chandler Johnson and Alessandra Luzzi, I currently teach a course called Analytics for Strategic Management. In this course (now in its second iteration), executive students work on real projects for real companies, applying various forms of machine learning (big data, analytics, whatever you want to call it) to business problems. We have just finished the second of five modules, and the projects are now defined.

Here is a (mostly anonymised) list:

  • The Agency for Public Management and eGovernment (Difi) wants to understand and predict which citizens are likely to reserve themselves against electronic communications from the government. The presumption is that these people may be mostly old, not on electronic media, or in other ways digitally unsophisticated – but that may not be true, so they want to find out.
  • An electric power distribution company wants to investigate power imbalances in the electric grid: In the electric grid, production has to match consumption at all times, or you will get (sometimes rather large) price fluctuations. Can they predict when imbalances (more consumption that production, for instance) will occur, so that they can adjust accordingly?
  • A company in the food and beverage industry want to offer recommendations to their (business) customers: When you order products from them, how can they suggest other products that may either sell well or differentiate the customer from the competition?
  • A petroleum producing company wants to predict unintended shutdowns and slowdowns in their production infrastructure. Such problems are costly and risky, but predictions are difficult because they are rather rare – and that creates difficulties with unbalanced data sets.
  • A major bank wants to look into the security profiles of their online customers and investigate whether some customers are less likely to be exposed to security risks (and therefore may be able to use less cumbersome security procedures than others).
  • An insurance company wants to investigate which of their new customers are likely to leave them (churn analysis) – and why. They want to find them early, while there is still time to do something to make them stay.
  • A ship management company wants to investigate the use of certain types of oil and optimise the delivery and use of it. (Though the oil is rather specialised, the ships are large and the expense significant.)
  • Norsk Tipping runs a service helping people who are in danger of becoming addicted to gaming, an important part of their societal responsibility which they take very seriously. They want to identify which of their customers are most likely to benefit from intervention. This is a rather tricky and interesting problem – you need to identify not only those who are likely to become addicted, but also make a judgement as to whether the intervention (of which there is limited capacity) is likely to help.
  • A major health club chain wants to identify customers who are not happy with their services, and they want to find them early, so they can make offers to activate them and make them stay.
  • A regional bank wants to identify customers who are about to leave them, particularly those who want to move their mortgage somewhere else. (This is also a problem of unbalanced data sets, since most customers stay.)
  • A major electronic goods retailer wants to do market basket analysis to be able to recommend and stock products that customers are likely to buy together with others.

All in all, a fairly typical set of examples of the use of machine learning and analytics in business – and I certainly like to work with practical examples with very clearly defined benefits. Now – a small matter of implementation!

Concorde moment

british_airways_concorde_g-boac_03I recently searched for the term “Concorde moment” and did not find it. The term has appeared on Top Gear some years ago (though I can’t find the clip), probably mentioned by James May (who knows something about technology evolution) or Jeremy Clarkson (who certainly lamented the passing of the Concorde many times.) What “Concorde moment” means, essentially, is (as Clarkson says in the video below) “a giant step backward for mankind”.

The Concorde is still the fastest passenger jet ever made (3.5 hours from London to New York) and still the most beautiful one. In the end, it turned out to be too noisy, too polluting, and too expensive, never really making money. But it sure looked impressive. I never got to go on one, despite working in an international consulting company and jetting back and forth across the pond quite a bit. But my boss once bamboozled someone into bleeding for the ticket, and lived off the experience for a long time.

palm_graffiti_gesturesA Concorde moment, in other words, is a situation where a groundbreaking technology ceases to be, despite clearly being (and remaining) best in class, for reasons that seem hard to understand. Other examples may include

  • the Palm Pilot with its Graffiti shorthand system, once used by businesspeople all over the world (and by my wife to take impressive notes in all her studies)
  • the Apollo space program – we last went to the moon in 1972, with Apollo 17, and have not been back since. 45 years without going back has resulted in some impressive conspiracy theories, but again, the lack of any scientific or economic reason for going there is probably why it hasn’t happened.
  • the Bugatti Veyron, at least according to Top Gear. Personally, I find the announced new Tesla Roadster much more exciting, but, well, everyone is entitled to an opinion.
  • and, well, suggestions?

Cool ad. Literally speaking.

This is our (NI Norwegian Business School) new ad for attracting international students. Which, if they do master’s courses in strategy, might mean that they will meet me. Be forewarned, I am just like this guy, with somewhat shorter hair and beard…

Looking forward to seeing you!